Surface Deformation of Augustine Volcano, 1992–2005, from Multiple-Interferogram Processing Using a Refined Small Baseline Subset (SBAS) Interferometric Synthetic Aperture Radar (InSAR) Approach

نویسندگان

  • Chang-Wook Lee
  • Zhong Lu
  • Hyung-Sup Jung
  • Joong-Sun Won
  • Daniel Dzurisin
چکیده

Augustine Volcano is an active stratovolcano located in southwestern Cook Inlet, about 280 kilometers southwest of Anchorage, Alaska. The volcano produced six significant explosive eruptions between 1812 and 1986. Augustine eruptions typically have an explosive onset followed by dome building. The most recent eruption began on January 11, 2006. We applied the small baseline subset (SBAS) interferometric synthetic aperture radar (InSAR) technique to measure ground surface deformation during 1992–2005 with the use of European Remote Sensing Satellites 1 and 2 (ERS–1 and ERS–2) radar imagery. Through a multiple-interferogram approach, atmospheric delay artifacts, which hinder conventional InSAR measurements, are significantly reduced by spatial and temporal filtering. This allows us to retrieve time-series deformation over coherent points at millimeter-scale accuracy. The deformation results from two independent satellite tracks agree with each other, suggesting 2 to 8 cm wholesale uplift of Augustine Volcano from 1992 to 2005. Global Positioning System (GPS) data acquired in September 2004 and October 2005 confirm the SBAS InSAR results. A preliminary model consisting of a contracting source at 2 to 4 km depth and an inflating source at 7 to 12 km depth fits the observed deformation reasonably well. We interpret the deeper source as a long-term magma storage zone and the shallower source as a subsidiary reservoir that was tapped during the 2006 eruption. The shallow source corresponds approximately to the location of the volcanotectonic earthquakes that preceded and followed the 1976 and 2006 eruptions, respectively.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Mapping ground surface deformation using temporarily coherent point SAR interferometry: Application to Los Angeles Basin

a r t i c l e i n f o Multi-temporal interferometric synthetic aperture radar (InSAR) is an effective tool to detect long-term seismotectonic motions by reducing the atmospheric artifacts, thereby providing more precise deformation signal. The commonly used approaches such as persistent scatterer InSAR (PSInSAR) and small baseline subset (SBAS) algorithms need to resolve the phase ambiguities i...

متن کامل

Interferometric Synthetic Aperture Radar Studies of Alaska Volcanoes

Interferometric synthetic aperture radar (InSAR) imaging is a recently developed geodetic technique capable of measuring ground-surface deformation with centimeter to subcentimeter vertical precision and spatial resolution of tens-of-meter over a relatively large region (~10 km). The spatial distribution of surface deformation data, derived from InSAR images, enables the construction of detaile...

متن کامل

StaMPS Improvement for Deformation Analysis in Mountainous Regions: Implications for the Damavand Volcano and Mosha Fault in Alborz

Interferometric Synthetic Aperture Radar (InSAR) capability to detect slow deformation over terrain areas is limited by temporal decorrelation, geometric decorrelation and atmospheric artefacts. Multitemporal InSAR methods such as Persistent Scatterer (PS-InSAR) and Small Baseline Subset (SBAS) have been developed to deal with various aspects of decorrelation and atmospheric problems affecting ...

متن کامل

Pyroclastic Flow Deposits and InSAR: Analysis of Long-Term Subsidence at Augustine Volcano, Alaska

Deformation of pyroclastic flow deposits begins almost immediately after emplacement, and continues thereafter for months or years. This study analyzes the extent, volume, thickness, and variability in pyroclastic flow deposits (PFDs) on Augustine Volcano from measuring their deformation rates with interferometric synthetic aperture radar (InSAR). To conduct this analysis, we obtained 48 SAR im...

متن کامل

Studies of Volcanoes of Alaska by Satellite Radar Interferometry

Interferometric synthetic aperture radar (InSAR) has provided a new imaging geodesy technique to measure the deformation of volcanoes at tens-of-meter horizontal resolution with centimeter to subcentimeter vertical precision. The two-dimensional surface deformation data enables the construction of detailed numerical models allowing the study of magmatic and tectonic processes beneath volcanoes....

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010